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Abstract

This paper investigates the singular electromechanical field near the crack tips of an internal crack. The crack is per-
pendicular to the interface formed by bonding two half planes of different functionally graded piezoelectric material.
The properties of two materials, such as elastic modulus, piezoelectric constant and dielectric constant, are assumed
in exponential forms and vary along the crack direction. The singular integral equations for impermeable and perme-
able cracks are derived and solved by using the Gauss—Chebyshev integration technique. It shows that the stresses and
electrical displacements around the crack tips have the conventional square root singularity. The stress intensity and
electric displacement intensity factors are highly affected by the material nonhomogeneity parameters ff and y. The solu-
tions for some degenerated problems can also be obtained.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Functionally graded piezoelectric material; Impermeable and permeable crack problems; Singular integral equation; Gauss—
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1. Introduction

In designing a smart structure, the piezoelectric elements are often bonded to metallic or composite
materials. Bimorph or multilayer piezoelectric actuators are these kinds of structures (Tomio, 1990; He
and Ye, 2000). The stress peaks will be induced at the interfaces to cause failure such as cracking or
debonding.
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The studies on the development of functionally graded elastic material become gradually mature. Typ-
ical papers include Delale and Erdogan (1983), Erdogan (1985), Erdogan et al. (1991a,b), Choi (1996), and
Asfar and Sekine (2000).

Recently, some researchers start to investigate the application of piezoelectric material with continuously
varying material properties (Zhu et al., 1995; Wu et al., 1996). The new materials are called functionally
graded piezoelectric material (FGPM). To our knowledge, Li and Weng (2002) first applied the concept
of fracture mechanics on a finite crack in a strip of functionally graded piezoelectric material. They found
that the singular stresses and electrical displacements at the tip of the crack in the FGPM carry the same
forms as those in a homogeneous piezoelectric material but the magnitudes of the intensity factors are
dependent on the gradient of the FGPM properties. Wang (2003) solved the antiplane crack and collinear
crack problems in FGPM. A class of functional forms has been assumed to describe the mechanical and the
electrical properties of the medium. For the permeable crack, the stress and the electrical displacement
intensity factors depend only on the applied mechanical loads. The piezoelectric effect has no effect on
the stress intensity factors. Ueda (2003) obtained the solutions for a crack in FGPM strip bonded to
two elastic surface layers. He used the energy density factors to predict the fracture behavior of the
structure.

In this paper, we use the model of Erdogan (1985) and change the material to FGPM. The crack prob-
lem can be reduced into a system of singular integral equations after applying the Fourier Transform and
solved numerically by using Gauss—Chebyshev integration technique. The stress and electrical displacement
intensity factors are then obtained from the near crack tip field solution of electro-mechanical results.

2. Formulation of the problem

Fig. 1 shows two functionally graded piezoelectric materials perfectly bonded together along y-axis. A
crack of length 2ag lies in a £ x < b and perpendicular to the interface. Since the poling directions of pie-
zoelectric materials are orientated along z-axis, the antiplane mechanical field and inplane electrical field are
coupled. The constitutive equations can be written as
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Fig. 1. Geometry of two bonded functionally graded piezoelectric materials containing a crack perpendicular to the interface.
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(1)

where t;, w;, D;, and ¢; are the shear stresses, antiplane displacements, inplane electrical displacements and
electric potentials, respectively. The variations of material constants cau;(X), €15(X), €11(;(x) called the
shear moduli, piezoelectric constants, and dielectric constants, respectively, are assumed in the following
exponential forms:

caa1)(x) = coexp(Px), eis)(x) = egexp(fx), ena)(x) = eexp(pfx) forx >0 )

cas)(X) = coexp(yx), eisp)(x) = epexp(px), enp(x) =sgexp(yx) forx <0
where f# and y are called nonhomogeneous parameters. The structure with negative  and positive y indi-
cates that two FGPMs are bonded on the stiffer sides. The constants ¢y, ey, and &, are the material prop-

erties at interface.
The static equilibrium equation and Maxwell’s equation under electro-static condition are given as

Oty , 0Ty, ODxy | 0Dy _
Ox % =0, Ox + oy =0 (3)

where the body forces and free charges have been neglected.
Substituting Eq. (1) into Eq. (3) and using the relations (2), we obtain the following equations for mate-
rials 1 and 2, respectively:

w, Gwl ow,
oG+ 59 re(Tr ) rolafirat) -0
(4a)
6 W1 0 ¢ an -
(axz v)- (—a 3o w) :
62W2 aWZ 62¢2 +y COaWZ a¢2 _
ze
) ) (4b)
0w 2 0w, ¢, 0°¢, ow, 0py\
(ax )‘80<az T ) T e TR ) T
Expressing the solutions of Egs. (4) in the following forms (Erdogan, 1985):
1 [ i 2 (= .
win) =5 [ e a2 [ g ) singay) da
R o (sa)
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N (50)
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we obtain:
Ji(o,y) = 4, (o) exp ( o + 1oc,8y)
S (o, y) (o) exp o? +1oc/3y)

g (x, o) 3

exp(
/ 402
g1 (x, %) exp( h- ﬁ o )

/+\/y +do? )

BB+ 4a2) ©

g12(x, %) %) exp

(7)

=+ /) + 4o
gn(x, o) = F(x) exp (%)0

The solutions of undetermined functions A;(a), Bj(a), Ci(a), Di(a), Ex(e), and F,(o) depends on the
mechanical and electrical conditions of crack surfaces. The electrical condition on the crack surfaces
may be permeable or impermeable.

2.1. Impermeable crack problem

(1) Continuity conditions along the interface:

wi(0,y) = w2(0,y) (8a)
$1(0,) = ¢,(0,y) (8b)
e(1)(0,5) = 1) (0,2) (8¢)
Dy(1)(0,5) = Dy2)(0, ) (8d)

(1) Symmetric conditions:
Since the electro-mechanical field is symmetric with respect to the x-axis, it is sufficient to consider the
upper surface for y = 0. Then, we have

wi(x,0) =0 for0<x<aand b <x< o0 (8e)

¢1(x,0) =0 for0<x<aand b<x<oco (8f)

wy(x,0) =0 for —ooZx <0 (8g)

¢,(x,0) =0 for —ooZx <0 (8h)
Note that the assumed forms of w, and ¢, in Eq. (5b) automatically satisfy the symmetric conditions (8g)
and (8h).

(ii1) Conditions on the crack surfaces:
The crack surface is impermeable and is simultaneously subjected to electrical displacement D(x) and
shear traction 7(x):
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7.y (x,0) = 7(x) fora<x<b (8i)

Dy1)(x,0) =D(x) fora<x<b (8))

where D(x) and 7(x) can be obtained by using superposition method from the remote electrical and mechan-
ical loads.

After applying the continuity conditions Egs. (8a)—(8d) and taking Fourier inverse transform, four un-
known functions can be expressed by the rest of two functions A4;(«) and Bj(«):

Ba) ~ ) = [ (o J )

w \02 +p? +ifp
Dy = [ (o
FQ(OC) Dl(a) ZHZm <5€2+p2+1ﬂp)B1(’0)d’0
-1 [= o .
E F — — eopD = _ A B
cosE (o) + s (o) — copCy (@) — eopD (@) =~ /ﬂc <a2 FRpo iﬁp)lp(co 1(p) + eBi(p))dp
1 o0
eosE (o) — eosFa (o) — eopC (o) + eopDy () = %lw (m> ip(—eodi(p) + € Bi(p))dp
)
where p = 7ﬂ7\/2m, § = 7}'+‘/2m.
Define two dislocation functions (Erdogan, 1985) g;(x) and g»(x) as
0
g1 (x) :awl(xao) (10a)
0
&) = 5 ¢1(x.0) (100)

Substituting Egs. (5a) and (6) into Egs. (10a) and (10b), and applying the conditions (8e) and (8f), we find
that g;(x) and g»(x) must satisfy the following equations:

/abgl(t)dt/abgz(t)dto (11)
The two remaining unknown functions can be solved as
Ai(a) = é /abgl (t)e™ dt (12a)
i [ .
Bi(w) =~ / & (e dr (12b)
By using the residue theorem, Ci(a), Di(x), Ex(a), and F,(a) can be obtained:
e :% /abgl(t)e”"dt (13)
Dy(a) = =M% /  eali)e e (14)
2m(p =)o Ja
Ex() _22?(;—1113)0;1 / ' g1 (e dt (15)
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_ (p_nl)OC b —nyt
Fz(ﬁ%)—m/a g (e " dt (16)

where n, = a;—p/2, and a; = \/a? + */4. From Egs. (5a), (6), (12), (13)~(16), conditions (8i) and (8j)

become

e (0) = o) e [ l) + kel g O+ e [ + b ole@d (7)

1/ 1 [?
()X, V) = D(X) = e — 1(X, 20X, 1)18 — &¢C" — 11X, 2\X, 1) 18>
Dy1)(x,0) = D(x) ’”n [k (x, 1) + ka(x, 1)]g, (1) dt ﬁ‘n k1 (x, 1) + ka(x, 1)|g>(1)de - (18)
where
:l /oc —/ o2 —Q—iﬁfxei“(H) da (19)

2 ) o

B(t—x o 2 - 2
ka(x, ) =¢' T / oo m) e IV 4y (20)

0 (p—s)ny/o2 + /4

The first integral of Eq. (17) is related to the FGM problem solved by Erdogan (1985). We define a function
K>(o) as the factor in the integrand of Eq. (20):

Ps-n) _ P-ntF

@*S)nl\/m_ al(OCZ‘f'O(l —|—ﬁ;’v)(al _g)

where o, = /o + y2/4.
Separating the singular term of the kernels k(x,7), Eqgs. (17) and (18) may be rewritten as following:

Tﬂ(l)(xv 0) = (x)
= coe/“%/ [thh (x, 1) + ka(x, t)] g, (¢)dt

Ky(o) = (1)

t—

+%wi/ﬂg_+h@o+h@ﬂ&@w (22)

_ eoe/’x% / ' {L (6 0) + ka(x, t)] 2,(f)dt

t—

where the kernel /(x,?) is as follows:

NG

- eoe/’*% /ab [1+ hi(x,£) + ka(x, t)}gz(t) dt (23)

‘-
> cos < > ] sina(t — x) doc+ ( 2) sin (g)] cos ot — x)do
( ﬁz) sm(%)—%] coso(t —x)d g/ cosaft = x) do (24)

0.25

l’l]()C7 t)
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with tan 0 = /o and 4 is an arbitrary positive constant. Note that if the piezoelectric effect is ignored, the
first integral of Eq. (22) is equivalent to the case of a functionally graded elastic material (Erdogan, 1985).
The solutions of the singular integral equation with the Cauchy type kernel have the form
Gi(t)

gi(t):m, i=1,2 (25)

where Gy(7) are bounded functions. The stress intensity factors and electric displacement intensity factors
can be derived (Muskhhelishvili, 1953). The results are:

Gi(b) o G(b)

mm=ggwﬁiﬂumwm=—mw—@jgﬁ T (26)
k3(a) = lim V2(a = x)t,z0(x,0) = coeﬂ“%"a))/z - eoeﬂ”% (27)
K2 (b) = lim 2(x — b)Dy1y(x,0) = —ege” (fl_(bj)/z + e (Zz_(bj)/z (28)
K(a) = lim /2(a = x)Dy)(x,0) = ere % — goel % (29)

In order to obtain the specific functions G(a) and G(b) (i =1,2), Egs. (22), (23) and conditions (11) are
normalized as (Erdogan et al., 1973):

ol 1 ! - _ o
1) (x, 0) = coef@ ) {E —+ / (h1(aopX + ¢, apf + ¢) + ky(aoX + ¢, apf + c))]fl(t) dr
—1 - -1
ol 11 :
+ eoe/f(a()x+6) |:E / P + / (h] (aOJ_C + ¢, apf + C) + kz(a())_( + ¢, apf + C)):|f2(i) ds (30)
-1 t= -1
ol h1 !
Dy1)(x,0) = goe @) [n —+ / (A (aox + ¢, aof + ¢) + ka(aox + ¢, apt + c))}fl (1) d?
-1 t= -1
N YL !
_ goeﬂ(aox+c) |:_ / TP + / (hl(ao)? +c, aot + C) + kz(ao)? +c, aot + C)):|f2(l) d¢ (31)
nTJ 41l —X —1
o o
[ nwai= [ fad=o (32)
-1 -1
The dimensionless length X and ¢ are defined by
=i g_lz¢ (33a)
ap ap
Ji(@O) =g1(0), fo(1) = g2(1) (33b)

Egs. (30) and (31) are the singular integral equation of the first kind. It can be solved numerically by Gauss—
Chebyshev integration formula (Erdogan et al., 1973). Because the solution has integrable singularities at
both ends of the crack, the index of the problem x = 1 defined in Erdogan et al. (1973). Thus the relation-
ship between fundamental and weighting function is
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_ Fi(z _ Fs(t
Sl =) 2 (34)
(I+5H(1 -9 (1+6(1 -7
Egs. (30)—(32) can be solved after reducing them into the following Chebyshev polynomial:
T(x’,) = coeﬂ(aoxﬂrc) Z %Fl(tk) [t o + 7'5(/11 (aoxr + ¢, apty + C) + kz(aox,. + ¢, apty + C))
k=1 k= Xr i
+ gl ST L, (1) — nw(hy (aox, + ¢, aoty + ¢) + ka(aox, + ¢, apty +¢))
=1 Lk — X i
n 1
D(Xr) — eoeﬁ(ao.w+c‘) Z %Fl (tk) |: + n(hl(aox, + ¢, apty + C) + ky (aox, + c,apty + C))
k=1 tk — X (35)
n M1 7
—ggellte) S LR, (1) P + w(hy (apx, + ¢, aoty + ¢) + ka(aox, + ¢, apty + ¢))
k=1 Lk — Ar J
> EF () =0
k=1
Y I (t) =0
k=1
where ¢, = cos (2/;1) m,k=12,...,nx.=costn, r=1,2,...,n — 1 are the nodes satisfy Chebyshev poly-

nomial of the first and second kind respectively (Rivlin, 1974). According to the relationship between Egs.
(25), (33) and (34), the intensity factors can be expressed as different forms as follows:

ky(b) = —coe®\/agF (1) — epe\/agF,(1) (36)
kiy(a) = coe\/agF (—1) + epe\/agF(—1) (37)
kL (b) = —epe\/agF (1) + &€ \/agF»(1) (38)
kP (a) = egel\/agF\(—1) — eoe™\/agF(—1) (39)

Here the unknown values of F;(—1) and F(1), (i =1,2) can be obtained from the quadratic extrapolation
from F(t, — 1), F{t, — 2), F;(t, — 3) and F;(ty), F;(t3), F;(t4), respectively.

2.2. Permeable crack problem

In this case, the conditions (8f) and (8j) of Section 2.1 should be modified to:
¢1(x,0) =0 for 0=x < 0 (40a)

Dy1y(x,0) =D.(x,0) =D(x) fora<x<b (40b)

where D (x,0) denotes the electric displacement of the space of the crack itself. To satisfy the permeable
condition, we need only one dislocation function g{(x). Following similar procedures of previous Section
2.1, the corresponding stress and electric displacement can be expressed as

Ty (%, 0) = 7(x) = coeﬁ"% / [% + hy(x, t) + ko (x, t)] g, () dr (41)

1

Dy1)(x,0) = D(x) = eoeﬁ"E / {% + hy(x,8) + ko (x, t)} g (t)de (42)
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Therefore the stress intensity factor k3 and the electric displacement intensity factor k3 are:

ks (b) = —coev/aF (1) 43)
ks(a) = coe”\/aF1(~1) (44)
k3 (b) = —eoe”\/aoF (1) (45)
k3 (@) = eoel\/agF1(—1) (46)

Since the crack is assumed to be electrically permeable, the condition (40a) results in the fact that the
electric field E,, is continuous across the crack surfaces and remains in a finite value at the crack tips. How-
ever, from the constitutive equations of piezoelectric material, the electrical displacement D, is related to
the shear strain y,. and the piezoelectric constant e;s. Therefore, D, must be singular at the crack tips
due to the discontinuous displacement of the crack surface. The corresponding electrical displacement
intensity factors k3 thus depend only on the material constant ¢, and not on the applied electric load.

The electric displacement intensity factor can be obtained by the relationship (Li and Tang, 2002; Wang,
2003)

K@) =2k(), i=ab (47)

If the piezoelectric constant e is imposed to be zero, the results can be reduced to the case of functionally
graded elastic material (Erdogan, 1985).

3. Five degenerated problems

The crack problem we have discussed can be reduced to five degenerated problems. The crack is parallel
to the direction of material gradient. To the authors’ knowledge, these simple problems have not been
solved yet.

3.1. Problem A: a FGPM half space contains a crack normal to the free surface x =0 (i.e. y — )

In this case, the material 2 is removed away by setting the material parameter y approaches infinity. The
boundary conditions on the free surface x = 0 become traction free and electrically opened. If we replace
conditions (8) by 7,.(0,y) = 0 and D,(0,y) = 0 and solve the problem from the beginning, Eqgs. (17) and (18)
will be the results. The kernel k; is unchanged and the function K5(«) in Eq. (21) should be replaced by

0(2

K> (o) TR

(48)
This result can also be obtained from Eq. (21) when y — oo.
3.2. Problem B: a FGPM half space contains a crack normal to a rigid surface x =0 (i.e. y — —0)

If the material parameter y approaches minus infinity, the material 2 is assumed to be rigid. This is the
case of an elastic half space bonded to a rigid half space. The boundary conditions on the rigid surface
x =0 is fixed in displacement and is electrically closed, i.e. w(0,y) = ¢(0,y) = 0. If the conditions (8) are
placed, the singularity integral equations are again the Eqgs. (17) and (18). The kernel k; is unchanged
and the function K,() in Eq. (21) should be replaced by
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(e P

This result can also be obtained from Eq. (21) when y — —co.

3.3. Problem C: a homogeneous piezoelectric half space contains a crack and is bonded to a FGPM half space

(p=0)
If the material 1 is a homogeneous piezoelectric half space, the function K,() becomes as follows:

B (oc — oy + 5)
Ko (o) = m (50)

3.4. Problem D: a FGPM half space contains a crack and is bonded to a homogeneous piezoelectric half space
(v=0)

If the material 2 is a homogeneous piezoelectric half space, the function K,() becomes as follows:

2o -2

o (o + o1 +5) (1 —5)

Ky(o) = (51)

3.5. General problem: an infinite FGPM medium (y = f§) or two different FGPM half planes (y = ) contains
an internal crack

If the material parameters y and f§ are equal, there is no interface. The function K>(«) or k, vanishes.

4. Results and discussions

In the following discussions, we take PZT-4 as the base material. The material properties are as follows:
co=25.6GPa, ey =127C/m* & =6.46x10°C/Vm

The variations of functionally graded piezoelectric material properties are in the exponential forms of (2).
For convenience, the stress and electric displacement intensity factors are normalized as

Lkl R0
i T()\/a_o D()\/%’

In Eq. (35), we use 7o = 4.2MPa and D, = 0.002 C/m?, which are the uniform shear stress and electric dis-
placement applied on the crack surfaces (Pak, 1990). Firstly, we discuss the degenerated problems.

i=a,b (52)

4.1. Degenerated problem A: y — oo

This case is a FGPM half space contains a crack normal to the surface x = 0, which is traction free and
electrically opened. Fig. 2 plots the variations of the normalized intensity factors at crack tips (i.e. k, and
k;) with normalized nonhomogeneous parameter Bay at different values of ¢/ay when ap = 2/3cm. It shows
that greater normalized intensity factors occur at the crack tip with stronger material properties. Fig. 2 can
be explained in detail by looking at Fig. 3, which shows the effects of the material property variations f§ on
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1.6 <
1_5__ \\Q\ --90--kac/a0=15
] N —<——kbpc/a0=1.5
1.4 - - —-E--kac/a0=3
o AN —H8—kpc/a0 =3
13— N --©--kac/a0=6
o ® | —©—kpcad=6
1.2
b

1.1

Normalized Intensity Factors ka, kb

-1 -0.5 0 0.5
Normalized Nonhomogeneous Parameter (Bag)

N

Fig. 2. Variations of the normalized intensity factors at crack tips « and b with normalized nonhomogeneous parameter fa at different
values of ¢/ay when ay = 2/3cm (y — o).

Ay /Ay Ay
______________ v k(@ >k(b)
k(a) <k(b) k(a) > k(b) e
a b a b a b
@p>0 (bp=0 (p<o0

Fig. 3. The effects of the material property variations on the intensity factors (surface x = 0 is traction free and electrically opened).

the intensity factors. The material properties on the crack tip side a are stronger when f is negative, and vice
versa. Consequently, the stresses and the electrical displacements and their related intensity factors become
higher at crack tip with higher material properties. For the homogeneous case with § = 0, the intensity fac-
tors at crack tip a should be greater than those near the crack tip b. If the crack is close to the surface x =0,
the edge effect appears apparently. In order to get equal intensity factors at both crack tips (i.e. k, = k;,), the
material properties near the crack tip » must be raised by a small amount value of . This phenomena can
be observed from Fig. 2 that k, = k, when 8 =0, and c¢/ay = 3 or 6. However, if the crack is closer to the
surface x =0 (say, c/ap=1.5), the lines k, and k, intersect at the point k,=k,=1.06435 when
pao = 0.091054.

4.2. Degenerated problem B: y — —0

This case is a FGPM half space contains a crack normal to the surface x = 0, which is clamped and elec-
trically closed. Fig. 4 plots the variations of the normalized intensity factors at crack tips (i.e. k, and kp)



3332 C.-H. Chue, Y.-L. Ou | International Journal of Solids and Structures 42 (2005) 3321-3337
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Normalized Intensity Factors kg, kb
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--90--kacla0=6 ®
B ——©6—kpc/a0=6
06 ' I ' I ' I ' |
-1 0.5 0 0.5 1

Normalized Nonhomogeneous Parameter (Bap)

Fig. 4. Variations of the normalized intensity factors at crack tips @ and b with normalized nonhomogeneous parameter fa, at different
values of ¢/ay when ag =2/3cm (y — —o0).

y S Ay y

R k@ > k()
k(@ < k() K@<kB) | e
a b a b a b

@p>0 (b)p=0 ©p<0

Fig. 5. The effects of the material property variations on the intensity factors (surface x = 0 is clamped and electrically closed).

with normalized nonhomogeneous parameter fa, at different values of ¢/ay when ay = 2/3cm. Again, the
results show that greater normalized intensity factors occur at the crack tip with stronger material proper-
ties. Fig. 5 shows the effects of the material property variations on the intensity factors of this case y — —oo.
For the homogeneous case with § = 0, the intensity factors at crack tip « should be smaller than those near
the crack tip b. In order to get equal intensity factors at both crack tips (i.e. k, = k;), the material properties
near the crack tip » must be decreased by a small amount value of . This phenomena can also be observed
from Fig. 4 that k, = k;, when B =0, and ¢/ay = 3 or 6. However, if the crack is closer to the surface x =0
(say, c/ag = 1.5), the lines k, and k, intersect at the point k, = k;, = 0.928167 when fa, = —0.109212.

4.3. Degenerated problem C: =0
In this case, the material 1 is reduced to a homogeneous piezoelectric material with ¢y = 25.6 GPa,

eo = 12.7C/m?, and &, = 6.46 x 10~° C/Vm. Fig. 6 shows the variations of normalized intensity factors with
material parameter y of material 2 when ay = 2/3cm. For the case y > 0, the material properties of material
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Fig. 6. Variation of normalized intensity factors with y at different crack location (f = 0).
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2 are weaker than those of the homogeneous material 1. It is expected that the intensity factors at crack tip
a are greater than those at crack tip b. As the crack move away further from the interface, say from
c/ay = 1.5 to 6, the magnitudes of the factors at crack tips @ and b will approach same values. For the other
case with y <0, the material properties of material 2 are stronger. The intensity factors at crack tip b

Normalized Intensity Factors ka, kb

1.3 —
--6&--kagcla0=15
N —<—Kkpc/ad=1.5
12—;‘\ - -HB--kac/la0=3
B RN —8—kpc/a0=3
'\\\\\\Q\\\\ --©6--kac/la0=6
s X | —©e—kpca0=6
1.1 ﬁ\\\\\\\
| 6.,
®
1 — %
0.9 —
X
0.8 — AN
L3N
. X
X
M-
Tt 71 T T T T ]
-1 -0.5 0 0.5 1

Normalized Nonhomogeneous Parameter (Bao)

Fig. 7. Variation of normalized intensity factors with f§ at different crack location (y = 0).
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become larger. Again, the magnitudes of the factors at crack tips @ and b will gradually approach same val-
ues when the crack is far away from the interface. If § =y = 0, the problem becomes a crack lies in an infin-
ity homogeneous piezoelectric material. The normalized intensity factors at crack tips a and b are equal to
one, which matches the conventional piezoelectric crack problem.

4.4. Degenerated problem D: y =0

Now, the material 2 is changed to a homogeneous piezoelectric material with ¢y =25.6GPa, ¢y =
12.7C/m?, and &, = 6.46 x 10~° C/Vm. The normalized intensity factors are plotted in Fig. 7. Similar to

1.6 —
i --%©-- kay=10P
1.5 —<— kp y=108
2 R - —HB--kay=B
s 14+ —8— kpy=p
X 4 —_ = — —
o o ka y=0.1B
5 13-
*g _
o 124
> i
2 119
‘Cl_.g _
£ 1 -
e)
3 i
2 0.9
©
g i
S 0.8
z i
0.7 &
0.6 L
-1 -0.5 0 0.5 1
(@ Normalized Nonhomogeneous Parameter (Bao)
1.6 —
- --©-- kay=-0.1p
15— —©—kpy=-0.1B
2 b -—B--kay=-B
8 1.4 — —8—kpy=-P
1 --¢©-- kay=-10B
@ _a
£ 13
‘g -
w 1.2
b .
9 1.1+
g -
IS
ke
3 i
= 0.9 —
©
g i
S 0.8
z
0.7 8
06 T I T I T I T I
-1 -0.5 0 0.5 1
(b) Normalized Nonhomogeneous Parameter (Bao)

Fig. 8. Variation of the normalized intensity factors with material parameters § and y. (a) y = 108, f, 0.15; (b) y = —0.18, —f, —10p.
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the degenerated problems A and B, the results show that greater normalized intensity factors occur at the
crack tip with stronger material properties.

4.5. General problems: f and y are finite and f+#y #0.

Finally, we discuss the most general cases that materials 1 and 2 are two different functionally graded
piezoelectric materials. Fig. 8(a) and (b) plot the variation of the normalized intensity factors with f and
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y when ay = 2/3cm. We can see in general from the figure that the intensity factors are greater at the tip
where the material properties are stronger. Two other results are: (i) For f <0 and y <0 (Fig. 8(a)), the
intensity factors for larger |y|(say, y = 10f) are smaller since the material properties of material 2 are stron-
ger; and (ii) For f <0 and y > 0 (Fig. 8(b)), the intensity factors for larger y (say, y = —10p) are larger since
the material properties of material 2 are weaker.

Fig. 9(a) and (b) plots the variations of normalized intensity factors with y when f=0.5 and —0.5,
respectively. For = 0.5, the material properties near the crack tip b are stronger. It can be seen clearly
from Fig. 9(a) that the intensity factors are larger at crack tip b. For the case ff =y, i.e. the uniform func-
tionally graded piezoelectric material, the normalized intensity factors are independent of the crack length.
They are k,=0.97154 and k;, =1.02447 for f=0.5 and k,=1.02447 and k;, =0.97154 for f=—0.5,
respectively. It is also found that the normalized intensity factors k, and k;, are nearly the same regardless
the value of y as the crack is far away from the interface.

For the permeable crack, the electric potential is continuous in the full region 0 < x < co. It is assumed
the electric displacement is also continuous across the crack surface and the crack itself. Thus the electric
field has no singularity at crack tips ¢ and b and the stress intensity factors depend only on the exerted shear
stress at the crack surface. It has been validated that the normalized stress intensity factors are the same as
those for the elastic medium in the symmetric loading case (i.e. impermeable crack) (Chen and Yu, 1997).
Thus the stress intensity factors for the permeable crack are also the same as the impermeable case (Li and
Duan, 2001).

5. Conclusions

The fracture behavior of the internal crack located within one of two bonded functionally graded pie-
zoelectric materials has been studied. Both the impermeable and permeable cases are considered. Under
the antiplane shear and in plane electric displacement, the problem is reduced to a set of singular integral
equations. The stress and electric displacement intensity factors for impermeable and permeable cracks are
obtained by using Gauss—Chebyshev integration technique. The problem can be reduced to five degener-
ated simple cases. The results show that the normalized intensity factors are greater at the crack tip where
the material properties are stronger. For the impermeable crack, the stress and electric displacement inten-
sity factors depend on the applied mechanical and electric loads. However, the intensity factors for the per-
meable crack depend only on the mechanical loads.
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