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Abstract

This paper investigates the singular electromechanical field near the crack tips of an internal crack. The crack is per-
pendicular to the interface formed by bonding two half planes of different functionally graded piezoelectric material.
The properties of two materials, such as elastic modulus, piezoelectric constant and dielectric constant, are assumed
in exponential forms and vary along the crack direction. The singular integral equations for impermeable and perme-
able cracks are derived and solved by using the Gauss–Chebyshev integration technique. It shows that the stresses and
electrical displacements around the crack tips have the conventional square root singularity. The stress intensity and
electric displacement intensity factors are highly affected by the material nonhomogeneity parameters b and c. The solu-
tions for some degenerated problems can also be obtained.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In designing a smart structure, the piezoelectric elements are often bonded to metallic or composite
materials. Bimorph or multilayer piezoelectric actuators are these kinds of structures (Tomio, 1990; He
and Ye, 2000). The stress peaks will be induced at the interfaces to cause failure such as cracking or
debonding.
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The studies on the development of functionally graded elastic material become gradually mature. Typ-
ical papers include Delale and Erdogan (1983), Erdogan (1985), Erdogan et al. (1991a,b), Choi (1996), and
Asfar and Sekine (2000).
Recently, some researchers start to investigate the application of piezoelectric material with continuously

varying material properties (Zhu et al., 1995; Wu et al., 1996). The new materials are called functionally
graded piezoelectric material (FGPM). To our knowledge, Li and Weng (2002) first applied the concept
of fracture mechanics on a finite crack in a strip of functionally graded piezoelectric material. They found
that the singular stresses and electrical displacements at the tip of the crack in the FGPM carry the same
forms as those in a homogeneous piezoelectric material but the magnitudes of the intensity factors are
dependent on the gradient of the FGPM properties. Wang (2003) solved the antiplane crack and collinear
crack problems in FGPM. A class of functional forms has been assumed to describe the mechanical and the
electrical properties of the medium. For the permeable crack, the stress and the electrical displacement
intensity factors depend only on the applied mechanical loads. The piezoelectric effect has no effect on
the stress intensity factors. Ueda (2003) obtained the solutions for a crack in FGPM strip bonded to
two elastic surface layers. He used the energy density factors to predict the fracture behavior of the
structure.
In this paper, we use the model of Erdogan (1985) and change the material to FGPM. The crack prob-

lem can be reduced into a system of singular integral equations after applying the Fourier Transform and
solved numerically by using Gauss–Chebyshev integration technique. The stress and electrical displacement
intensity factors are then obtained from the near crack tip field solution of electro-mechanical results.
2. Formulation of the problem

Fig. 1 shows two functionally graded piezoelectric materials perfectly bonded together along y-axis. A
crack of length 2a0 lies in a 5 x 5 b and perpendicular to the interface. Since the poling directions of pie-
zoelectric materials are orientated along z-axis, the antiplane mechanical field and inplane electrical field are
coupled. The constitutive equations can be written as
Fig
. 1. Geometry of two bonded functionally graded piezoelectric materials containing a crack perpendicular to the interface.
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where sij, wi, Di, and /i are the shear stresses, antiplane displacements, inplane electrical displacements and
electric potentials, respectively. The variations of material constants c44(i)(x), e15(i)(x), e11(i)(x) called the
shear moduli, piezoelectric constants, and dielectric constants, respectively, are assumed in the following
exponential forms:
c44ð1ÞðxÞ ¼ c0 expðbxÞ; e15ð1ÞðxÞ ¼ e0 expðbxÞ; e11ð1ÞðxÞ ¼ e0 expðbxÞ for x > 0

c44ð2ÞðxÞ ¼ c0 expðcxÞ; e15ð2ÞðxÞ ¼ e0 expðcxÞ; e11ð2ÞðxÞ ¼ e0 expðcxÞ for x < 0
ð2Þ
where b and c are called nonhomogeneous parameters. The structure with negative b and positive c indi-
cates that two FGPMs are bonded on the stiffer sides. The constants c0, e0, and e0 are the material prop-
erties at interface.
The static equilibrium equation and Maxwell�s equation under electro-static condition are given as
osxzðiÞ
ox
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oy

¼ 0; oDxðiÞ

ox
þ oDyðiÞ

oy
¼ 0 ð3Þ
where the body forces and free charges have been neglected.
Substituting Eq. (1) into Eq. (3) and using the relations (2), we obtain the following equations for mate-

rials 1 and 2, respectively:
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Expressing the solutions of Eqs. (4) in the following forms (Erdogan, 1985):
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we obtain:
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The solutions of undetermined functions A1(a), B1(a), C1(a), D1(a), E2(a), and F2(a) depends on the
mechanical and electrical conditions of crack surfaces. The electrical condition on the crack surfaces
may be permeable or impermeable.

2.1. Impermeable crack problem

(i) Continuity conditions along the interface:
w1ð0; yÞ ¼ w2ð0; yÞ ð8aÞ

/1ð0; yÞ ¼ /2ð0; yÞ ð8bÞ

sxzð1Þð0; yÞ ¼ sxzð2Þð0; yÞ ð8cÞ

Dxð1Þð0; yÞ ¼ Dxð2Þð0; yÞ ð8dÞ
(ii) Symmetric conditions:

Since the electro-mechanical field is symmetric with respect to the x-axis, it is sufficient to consider the
upper surface for y = 0. Then, we have
w1ðx; 0Þ ¼ 0 for 05x < a and b < x < 1 ð8eÞ

/1ðx; 0Þ ¼ 0 for 05x < a and b < x < 1 ð8fÞ

w2ðx; 0Þ ¼ 0 for �15x < 0 ð8gÞ

/2ðx; 0Þ ¼ 0 for �15x < 0 ð8hÞ

Note that the assumed forms of w2 and /2 in Eq. (5b) automatically satisfy the symmetric conditions (8g)
and (8h).
(iii) Conditions on the crack surfaces:

The crack surface is impermeable and is simultaneously subjected to electrical displacement D(x) and
shear traction s(x):
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syzð1Þðx; 0Þ ¼ sðxÞ for a < x < b ð8iÞ

Dyð1Þðx; 0Þ ¼ DðxÞ for a < x < b ð8jÞ
where D(x) and s(x) can be obtained by using superposition method from the remote electrical and mechan-
ical loads.
After applying the continuity conditions Eqs. (8a)–(8d) and taking Fourier inverse transform, four un-

known functions can be expressed by the rest of two functions A1(a) and B1(a):
E2ðaÞ � C1ðaÞ ¼ 1
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�1
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a
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2
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2
:

Define two dislocation functions (Erdogan, 1985) g1(x) and g2(x) as
g1ðxÞ ¼
o

ox
w1ðx; 0Þ ð10aÞ

g2ðxÞ ¼
o

ox
/1ðx; 0Þ ð10bÞ
Substituting Eqs. (5a) and (6) into Eqs. (10a) and (10b), and applying the conditions (8e) and (8f), we find
that g1(x) and g2(x) must satisfy the following equations:
Z b

a
g1ðtÞdt ¼

Z b

a
g2ðtÞdt ¼ 0 ð11Þ
The two remaining unknown functions can be solved as
A1ðaÞ ¼
i

a

Z b

a
g1ðtÞeiat dt ð12aÞ

B1ðaÞ ¼
i

a

Z b

a
g2ðtÞeiat dt ð12bÞ
By using the residue theorem, C1(a), D1(a), E2(a), and F2(a) can be obtained:
C1ðaÞ ¼
ðs� n1Þa
2n1ðp � sÞa1

Z b

a
g1ðtÞe�n1t dt ð13Þ

D1ðaÞ ¼
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a
g2ðtÞe�n1t dt ð14Þ

E2ðaÞ ¼
ðp � n1Þa
2n1ðp � sÞa1

Z b

a
g1ðtÞe�n1t dt ð15Þ
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F 2ðaÞ ¼
ðp � n1Þa
2n1ðp � sÞa1

Z b

a
g2ðtÞe�n1t dt ð16Þ
where n1 = a1�b/2, and a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2=4

q
. From Eqs. (5a), (6), (12), (13)–(16), conditions (8i) and (8j)

become
syzð1Þðx; 0Þ ¼ sðxÞ ¼ c0ebx
1

p

Z b

a
½k1ðx; tÞ þ k2ðx; tÞ	g1ðtÞdt þ e0ebx

1

p

Z b

a
½k1ðx; tÞ þ k2ðx; tÞ	g2ðtÞdt ð17Þ

Dyð1Þðx; 0Þ ¼ DðxÞ ¼ e0ebx
1

p
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a
½k1ðx; tÞ þ k2ðx; tÞ	g1ðtÞdt � e0e

bx 1

p
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a
½k1ðx; tÞ þ k2ðx; tÞ	g2ðtÞdt ð18Þ
where
k1ðx; tÞ ¼
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�
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eiaðt�xÞ da ð19Þ
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p
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The first integral of Eq. (17) is related to the FGM problem solved by Erdogan (1985). We define a function
K2(a) as the factor in the integrand of Eq. (20):
K2ðaÞ ¼
a2ðs� n1Þ

ðp � sÞn1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2

� � ð21Þ
where a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2=4

p
.

Separating the singular term of the kernels k1(x, t), Eqs. (17) and (18) may be rewritten as following:
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¼ c0ebx
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� �
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� �
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� �
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where the kernel h1(x, t) is as follows:
h1ðx; tÞ ¼
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� �0:25
cos

h
2

� �
� 1

" #
sin aðt � xÞda þ

Z A

0

1þ b2

a2
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with tan h ¼ b=a and A is an arbitrary positive constant. Note that if the piezoelectric effect is ignored, the
first integral of Eq. (22) is equivalent to the case of a functionally graded elastic material (Erdogan, 1985).
The solutions of the singular integral equation with the Cauchy type kernel have the form
giðtÞ ¼
GiðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt � aÞðb� tÞ
p ; i ¼ 1; 2 ð25Þ
where Gi(t) are bounded functions. The stress intensity factors and electric displacement intensity factors
can be derived (Muskhhelishvili, 1953). The results are:
k3ðbÞ ¼ lim
x!bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� bÞ

p
syzð1Þðx; 0Þ ¼ �c0ebb

G1ðbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ=2

p � e0ebb
G2ðbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ=2

p ð26Þ

k3ðaÞ ¼ lim
x!a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða� xÞ

p
syzð1Þðx; 0Þ ¼ c0eba

G1ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ=2

p þ e0eba
G2ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ=2

p ð27Þ

kD3 ðbÞ ¼ lim
x!bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx� bÞ

p
Dyð1Þðx; 0Þ ¼ �e0ebb

G1ðbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ=2

p þ e0e
bb G2ðbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb� aÞ=2
p ð28Þ

kD3 ðaÞ ¼ lim
x!a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða� xÞ

p
Dyð1Þðx; 0Þ ¼ e0eba

G1ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� aÞ=2

p � e0e
ba G2ðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb� aÞ=2
p ð29Þ
In order to obtain the specific functions Gi(a) and Gi(b) (i = 1,2), Eqs. (22), (23) and conditions (11) are
normalized as (Erdogan et al., 1973):
syzð1Þðx; 0Þ ¼ c0ebða0
�xþcÞ 1

p

Z 1

�1

1
�t � �x

þ
Z 1

�1
ðh1ða0�xþ c; a0�t þ cÞ þ k2ða0�xþ c; a0�t þ cÞÞ

� �
f1ð�tÞd�t

þ e0ebða0
�xþcÞ 1

p

Z 1

�1

1
�t � �x

þ
Z 1

�1
ðh1ða0�xþ c; a0�t þ cÞ þ k2ða0�xþ c; a0�t þ cÞÞ

� �
f2ð�tÞd�t ð30Þ

Dyð1Þðx; 0Þ ¼ e0ebða0
�xþcÞ 1

p

Z 1

�1

1
�t � �x

þ
Z 1

�1
ðh1ða0�xþ c; a0�t þ cÞ þ k2ða0�xþ c; a0�t þ cÞÞ

� �
f1ð�tÞd�t

� e0e
bða0�xþcÞ 1

p

Z 1

�1

1
�t � �x

þ
Z 1

�1
ðh1ða0�xþ c; a0�t þ cÞ þ k2ða0�xþ c; a0�t þ cÞÞ

� �
f2ð�tÞd�t ð31Þ

Z 1

�1
f1ð�tÞd�t ¼

Z 1

�1
f2ð�tÞd�t ¼ 0 ð32Þ
The dimensionless length �x and �t are defined by
�x ¼ x� c
a0

; �t ¼ t � c
a0

ð33aÞ

f1ð�tÞ ¼ g1ðtÞ; f 2ð�tÞ ¼ g2ðtÞ ð33bÞ

Eqs. (30) and (31) are the singular integral equation of the first kind. It can be solved numerically by Gauss–
Chebyshev integration formula (Erdogan et al., 1973). Because the solution has integrable singularities at
both ends of the crack, the index of the problem j = 1 defined in Erdogan et al. (1973). Thus the relation-
ship between fundamental and weighting function is
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f1ð�tÞ ¼
F 1ð�tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ�tÞð1��tÞ
p ; f 2ð�tÞ ¼

F 2ð�tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ�tÞð1��tÞ

p ð34Þ
Eqs. (30)–(32) can be solved after reducing them into the following Chebyshev polynomial:
sðxrÞ ¼ c0ebða0xrþcÞPn
k¼1

1
n F 1ðtkÞ

1

tk � xr
þ pðh1ða0xr þ c; a0tk þ cÞ þ k2ða0xr þ c; a0tk þ cÞÞ

� �

þe0ebða0xrþcÞPn
k¼1

1
n F 2ðtkÞ

1

tk � xr
þ pðh1ða0xr þ c; a0tk þ cÞ þ k2ða0xr þ c; a0tk þ cÞÞ

� �

DðxrÞ ¼ e0ebða0xrþcÞPn
k¼1

1
n F 1ðtkÞ

1

tk � xr
þ pðh1ða0xr þ c; a0tk þ cÞ þ k2ða0xr þ c; a0tk þ cÞÞ

� �

� e0ebða0xrþcÞPn
k¼1

1
n F 2ðtkÞ

1

tk � xr
þ pðh1ða0xr þ c; a0tk þ cÞ þ k2ða0xr þ c; a0tk þ cÞÞ

� �
Pn
k¼1

p
n F 1ðtkÞ ¼ 0

Pn
k¼1

p
n F 2ðtkÞ ¼ 0

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð35Þ
where tk ¼ cos ð2k�1Þ2n p, k = 1,2, . . ., n; xr ¼ cos rn p, r = 1,2, . . ., n � 1 are the nodes satisfy Chebyshev poly-
nomial of the first and second kind respectively (Rivlin, 1974). According to the relationship between Eqs.
(25), (33) and (34), the intensity factors can be expressed as different forms as follows:
k3ðbÞ ¼ �c0ebb
ffiffiffiffiffi
a0

p
F 1ð1Þ � e0ebb

ffiffiffiffiffi
a0

p
F 2ð1Þ ð36Þ

k3ðaÞ ¼ c0eba
ffiffiffiffiffi
a0

p
F 1ð�1Þ þ e0eba

ffiffiffiffiffi
a0

p
F 2ð�1Þ ð37Þ

k D
3 ðbÞ ¼ �e0ebb

ffiffiffiffiffi
a0

p
F 1ð1Þ þ e0e

bb ffiffiffiffiffi
a0

p
F 2ð1Þ ð38Þ

k D
3 ðaÞ ¼ e0eba

ffiffiffiffiffi
a0

p
F 1ð�1Þ � e0e

ba ffiffiffiffiffi
a0

p
F 2ð�1Þ ð39Þ
Here the unknown values of Fi (�1) and Fi(1), (i = 1,2) can be obtained from the quadratic extrapolation
from Fi(tn � 1), Fi(tn � 2), Fi (tn � 3) and Fi (t2), Fi (t3), Fi (t4), respectively.

2.2. Permeable crack problem

In this case, the conditions (8f) and (8j) of Section 2.1 should be modified to:
/1ðx; 0Þ ¼ 0 for 05x < 1 ð40aÞ

Dyð1Þðx; 0Þ ¼ Dcðx; 0Þ ¼ DðxÞ for a < x < b ð40bÞ
where Dc(x,0) denotes the electric displacement of the space of the crack itself. To satisfy the permeable
condition, we need only one dislocation function g1(x). Following similar procedures of previous Section
2.1, the corresponding stress and electric displacement can be expressed as
syzð1Þðx; 0Þ ¼ sðxÞ ¼ c0ebx
1

p

Z b

a

1

t � x
þ h1ðx; tÞ þ k2ðx; tÞ

� �
g1ðtÞdt ð41Þ

Dyð1Þðx; 0Þ ¼ DðxÞ ¼ e0ebx
1

p

Z b

a

1

t � x
þ h1ðx; tÞ þ k2ðx; tÞ

� �
g1ðtÞdt ð42Þ
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Therefore the stress intensity factor k3 and the electric displacement intensity factor k
D
3 are:
k3ðbÞ ¼ �c0ebb
ffiffiffiffiffi
a0

p
F 1ð1Þ ð43Þ

k3ðaÞ ¼ c0eba
ffiffiffiffiffi
a0

p
F 1ð�1Þ ð44Þ

kD3 ðbÞ ¼ �e0ebb
ffiffiffiffiffi
a0

p
F 1ð1Þ ð45Þ

kD3 ðaÞ ¼ e0eba
ffiffiffiffiffi
a0

p
F 1ð�1Þ ð46Þ
Since the crack is assumed to be electrically permeable, the condition (40a) results in the fact that the
electric field Ey is continuous across the crack surfaces and remains in a finite value at the crack tips. How-
ever, from the constitutive equations of piezoelectric material, the electrical displacement Dy is related to
the shear strain cyz and the piezoelectric constant e15. Therefore, Dy must be singular at the crack tips
due to the discontinuous displacement of the crack surface. The corresponding electrical displacement
intensity factors kD3 thus depend only on the material constant e0 and not on the applied electric load.
The electric displacement intensity factor can be obtained by the relationship (Li and Tang, 2002; Wang,

2003)
kD3 ðiÞ ¼
e0
c0
k3ðiÞ; i ¼ a; b ð47Þ
If the piezoelectric constant e0 is imposed to be zero, the results can be reduced to the case of functionally
graded elastic material (Erdogan, 1985).
3. Five degenerated problems

The crack problem we have discussed can be reduced to five degenerated problems. The crack is parallel
to the direction of material gradient. To the authors� knowledge, these simple problems have not been
solved yet.

3.1. Problem A: a FGPM half space contains a crack normal to the free surface x = 0 (i.e. c ! 1)

In this case, the material 2 is removed away by setting the material parameter c approaches infinity. The
boundary conditions on the free surface x = 0 become traction free and electrically opened. If we replace
conditions (8) by sxz(0,y) = 0 and Dx(0,y) = 0 and solve the problem from the beginning, Eqs. (17) and (18)
will be the results. The kernel k1 is unchanged and the function K2(a) in Eq. (21) should be replaced by
K2ðaÞ ¼
a2

a1 a1 þ b
2

� � ð48Þ
This result can also be obtained from Eq. (21) when c ! 1.

3.2. Problem B: a FGPM half space contains a crack normal to a rigid surface x = 0 (i.e. c ! �1)

If the material parameter c approaches minus infinity, the material 2 is assumed to be rigid. This is the
case of an elastic half space bonded to a rigid half space. The boundary conditions on the rigid surface
x = 0 is fixed in displacement and is electrically closed, i.e. w(0,y) = /(0,y) = 0. If the conditions (8) are
placed, the singularity integral equations are again the Eqs. (17) and (18). The kernel k1 is unchanged
and the function K2(a) in Eq. (21) should be replaced by
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K2ðaÞ ¼
�a2

a1 a1 � b
2

� � ð49Þ
This result can also be obtained from Eq. (21) when c ! �1.

3.3. Problem C: a homogeneous piezoelectric half space contains a crack and is bonded to a FGPM half space
(b = 0)

If the material 1 is a homogeneous piezoelectric half space, the function K2(a) becomes as follows:
K2ðaÞ ¼
a � a2 þ c

2

� �
a2 þ a � c

2

� � ð50Þ
3.4. Problem D: a FGPM half space contains a crack and is bonded to a homogeneous piezoelectric half space

(c = 0)

If the material 2 is a homogeneous piezoelectric half space, the function K2(a) becomes as follows:
K2ðaÞ ¼
a2 a1 � a � b

2

� �
a1 a þ a1 þ b

2

� �
a1 � b

2

� � ð51Þ
3.5. General problem: an infinite FGPM medium (c = b) or two different FGPM half planes (c = b) contains

an internal crack

If the material parameters c and b are equal, there is no interface. The function K2(a) or k2 vanishes.
4. Results and discussions

In the following discussions, we take PZT-4 as the base material. The material properties are as follows:
c0 ¼ 25:6GPa; e0 ¼ 12:7C=m2; e0 ¼ 6:46� 10�9 C=Vm

The variations of functionally graded piezoelectric material properties are in the exponential forms of (2).
For convenience, the stress and electric displacement intensity factors are normalized as
ki ¼
k3ðiÞ
s0

ffiffiffiffiffi
a0

p ¼ kD3 ðiÞ
D0

ffiffiffiffiffi
a0

p ; i ¼ a; b ð52Þ
In Eq. (35), we use s0 = 4.2MPa and D0 = 0.002C/m
2, which are the uniform shear stress and electric dis-

placement applied on the crack surfaces (Pak, 1990). Firstly, we discuss the degenerated problems.

4.1. Degenerated problem A: c ! 1

This case is a FGPM half space contains a crack normal to the surface x = 0, which is traction free and
electrically opened. Fig. 2 plots the variations of the normalized intensity factors at crack tips (i.e. ka and
kb) with normalized nonhomogeneous parameter ba0 at different values of c/a0 when a0 = 2/3cm. It shows
that greater normalized intensity factors occur at the crack tip with stronger material properties. Fig. 2 can
be explained in detail by looking at Fig. 3, which shows the effects of the material property variations b on
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Fig. 2. Variations of the normalized intensity factors at crack tips a and b with normalized nonhomogeneous parameter ba0 at different
values of c/a0 when a0 = 2/3cm (c ! 1).
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the intensity factors. The material properties on the crack tip side a are stronger when b is negative, and vice
versa. Consequently, the stresses and the electrical displacements and their related intensity factors become
higher at crack tip with higher material properties. For the homogeneous case with b = 0, the intensity fac-
tors at crack tip a should be greater than those near the crack tip b. If the crack is close to the surface x = 0,
the edge effect appears apparently. In order to get equal intensity factors at both crack tips (i.e. ka = kb), the
material properties near the crack tip b must be raised by a small amount value of b. This phenomena can
be observed from Fig. 2 that ka * kb when b = 0, and c/a0 = 3 or 6. However, if the crack is closer to the
surface x = 0 (say, c/a0 = 1.5), the lines ka and kb intersect at the point ka = kb = 1.06435 when
ba0* 0.091054.

4.2. Degenerated problem B: c ! �1

This case is a FGPM half space contains a crack normal to the surface x = 0, which is clamped and elec-
trically closed. Fig. 4 plots the variations of the normalized intensity factors at crack tips (i.e. ka and kb)
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with normalized nonhomogeneous parameter ba0 at different values of c/a0 when a0 = 2/3cm. Again, the
results show that greater normalized intensity factors occur at the crack tip with stronger material proper-
ties. Fig. 5 shows the effects of the material property variations on the intensity factors of this case c ! �1.
For the homogeneous case with b = 0, the intensity factors at crack tip a should be smaller than those near
the crack tip b. In order to get equal intensity factors at both crack tips (i.e. ka = kb), the material properties
near the crack tip b must be decreased by a small amount value of b. This phenomena can also be observed
from Fig. 4 that ka * kb when b = 0, and c/a0 = 3 or 6. However, if the crack is closer to the surface x = 0
(say, c/a0 = 1.5), the lines ka and kb intersect at the point ka = kb = 0.928167 when ba0* �0.109212.

4.3. Degenerated problem C: b = 0

In this case, the material 1 is reduced to a homogeneous piezoelectric material with c0 = 25.6GPa,
e0 = 12.7C/m

2, and e0 = 6.46 · 10�9C/Vm. Fig. 6 shows the variations of normalized intensity factors with
material parameter c of material 2 when a0 = 2/3cm. For the case c > 0, the material properties of material
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2 are weaker than those of the homogeneous material 1. It is expected that the intensity factors at crack tip
a are greater than those at crack tip b. As the crack move away further from the interface, say from
c/a0 = 1.5 to 6, the magnitudes of the factors at crack tips a and b will approach same values. For the other
case with c < 0, the material properties of material 2 are stronger. The intensity factors at crack tip b
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become larger. Again, the magnitudes of the factors at crack tips a and b will gradually approach same val-
ues when the crack is far away from the interface. If b = c = 0, the problem becomes a crack lies in an infin-
ity homogeneous piezoelectric material. The normalized intensity factors at crack tips a and b are equal to
one, which matches the conventional piezoelectric crack problem.

4.4. Degenerated problem D: c = 0

Now, the material 2 is changed to a homogeneous piezoelectric material with c0 = 25.6GPa, e0 =
12.7C/m2, and e0 = 6.46 · 10�9C/Vm. The normalized intensity factors are plotted in Fig. 7. Similar to
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the degenerated problems A and B, the results show that greater normalized intensity factors occur at the
crack tip with stronger material properties.

4.5. General problems: b and c are finite and b5c50.

Finally, we discuss the most general cases that materials 1 and 2 are two different functionally graded
piezoelectric materials. Fig. 8(a) and (b) plot the variation of the normalized intensity factors with b and
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c when a0 = 2/3cm. We can see in general from the figure that the intensity factors are greater at the tip
where the material properties are stronger. Two other results are: (i) For b < 0 and c < 0 (Fig. 8(a)), the
intensity factors for larger jcj(say, c = 10b) are smaller since the material properties of material 2 are stron-
ger; and (ii) For b < 0 and c > 0 (Fig. 8(b)), the intensity factors for larger c (say, c = �10b) are larger since
the material properties of material 2 are weaker.
Fig. 9(a) and (b) plots the variations of normalized intensity factors with c when b = 0.5 and �0.5,

respectively. For b = 0.5, the material properties near the crack tip b are stronger. It can be seen clearly
from Fig. 9(a) that the intensity factors are larger at crack tip b. For the case b = c, i.e. the uniform func-
tionally graded piezoelectric material, the normalized intensity factors are independent of the crack length.
They are ka = 0.97154 and kb = 1.02447 for b = 0.5 and ka = 1.02447 and kb = 0.97154 for b = �0.5,
respectively. It is also found that the normalized intensity factors ka and kb are nearly the same regardless
the value of c as the crack is far away from the interface.
For the permeable crack, the electric potential is continuous in the full region 0 5 x <1. It is assumed

the electric displacement is also continuous across the crack surface and the crack itself. Thus the electric
field has no singularity at crack tips a and b and the stress intensity factors depend only on the exerted shear
stress at the crack surface. It has been validated that the normalized stress intensity factors are the same as
those for the elastic medium in the symmetric loading case (i.e. impermeable crack) (Chen and Yu, 1997).
Thus the stress intensity factors for the permeable crack are also the same as the impermeable case (Li and
Duan, 2001).
5. Conclusions

The fracture behavior of the internal crack located within one of two bonded functionally graded pie-
zoelectric materials has been studied. Both the impermeable and permeable cases are considered. Under
the antiplane shear and in plane electric displacement, the problem is reduced to a set of singular integral
equations. The stress and electric displacement intensity factors for impermeable and permeable cracks are
obtained by using Gauss–Chebyshev integration technique. The problem can be reduced to five degener-
ated simple cases. The results show that the normalized intensity factors are greater at the crack tip where
the material properties are stronger. For the impermeable crack, the stress and electric displacement inten-
sity factors depend on the applied mechanical and electric loads. However, the intensity factors for the per-
meable crack depend only on the mechanical loads.
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